CATALYTIC REDUCTION OF HYDRAZINE TO AMMONIA BY THE REDUCED SPECIES OF $[Mo_2Fe_6S_8L_9]^{3-}$ AND $[Fe_4S_4L_4]^{2-}$ (L = SPh, SCH $_2$ CH $_2$ OH)

Yoshiyuki HOZUMI, Yoshinobu IMASAKA, Koji TANAKA, and Toshio TANAKA*

Department of Applied Chemistry, Faculty of Engineering,
Osaka University, Suita, Osaka 565

Hydrazine can be reduced to NH $_3$ catalytically in the presence of $[{\rm Mo_2Fe_6S_8L_9}]^{3-}$ or $[{\rm Fe_4S_4L_4}]^{2-}$ (L = SPh, SCH $_2$ CH $_2$ OH) in H $_2$ O or MeOH/THF by the controlled potential electrolysis. The maximum current efficiency in the electrochemical reduction of N $_2$ H $_4$ attains 97% and the turnover number of NH $_3$ produced per 1 h is 23 in MeOH/THF.

The reduction of N_2 to NH_3 by nitrogenase has been suggested to proceed via enzyme-bound N_2H_2 and N_2H_4 as intermediates. In fact, the formation of N_2H_4 was confirmed in the reduction of N_2 by Klebsiella pneumonia, and some dinitrogen-molybdenum and -tungsten complexes reacted with mineral acids to afford N_2H_4 as well as NH_3 . The reduction of N_2H_4 to NH_3 also was successfully conducted by the catalyst composed of sodium molybdate, L-cystein, and $NaBH_4$ with the turnover number of 4.2 NH_3 mol/(Mo-cystein complex mol)h. The amount of H_2 which would evolve concomitantly, however, has not been determined, though the determination of H_2 is essentially important for examining the selectivity of such a catalytic system. Recently, we have found that N_2 can be reduced to NH_3 by the electrochemically reduced species of $[Mo_2Fe_6S_8(SPh)_9]^{3-}$ and $[Fe_4S_4(SPh)_4]^{2-}$. This result has driven us to study the reduction of N_2H_4 by the same catalysts. This letter reports the catalytic reduction of N_2H_4 to NH_3 .

The reduction of N₂H₄ was conducted on an Hg working electrode in an H₂O or MeOH/THF solution containing $[R_4N]_3[Mo_2Fe_6S_8L_9]$ (R = n-Bu for L = SPh, ^{6a)} R = Et for L = SCH₂CH₂OH^{6b)}) or $[R_4N]_2[Fe_4S_4L_4]$ (R = n-Bu for L = SPh, ^{7a)} R = Me for L = SCH₂CH₂-

Fig. 1. The reduction of N_2H_4 by the reduced species of $[Mo_2Fe_6S_8(SPh)_9]^{3-}$ (-1.30 V vs. SCE) suspended in H_2O at pH 12.0.

 ${\rm OH}^{7{\rm b}})$ under the controlled potential electrolysis conditions, as described elsewhere. By Hydrazine was reduced to NH $_3$ with concomitant evolution of H $_2$ arising from the reduction of hydrogen ions under the controlled potential electrolysis (-1.30 V vs. SCE) of $[{\rm Mo}_2{\rm Fe}_6{\rm S}_8({\rm SPh})_9]^{3-9}$ (16 $\mu{\rm mol}$) suspended in an aqueous solution (20 cm 3) of N $_2{\rm H}_4$ (1.4 $\mu{\rm mol}$) at pH 12.0 buffered with H $_3{\rm PO}_4$ -NaOH. The plots of the amount of NH $_3$ or H $_2$ produced divided by the amount of the catalyst vs. the reaction time were linear after the initial induction period of about 1 h, as shown in Fig. 1. The amounts of NH $_3$ and H $_2$ produced attain 26 and 19 times of that of the catalyst in 4 h, respectively, indicating that the reduction of N $_2{\rm H}_4$ and hydrogen ions proceeds catalytically. Table 1 summarizes the results of the electrochemical reduction of N $_2{\rm H}_4$ by four catalysts in H $_2{\rm O}$ at pH 7.0 and 12.0 or in MeOH/THF. The sum of current efficiencies calculated from Eq. 1 for the

Current efficiency (
$$\eta$$
) =
$$\frac{\text{Amount of NH}_3 \text{ or } 2\text{H}_2 \text{ produced}}{\text{Quantity of electricity consumed/96480 C mol}^{-1}} \times 100 \quad (1)$$

Table 1. Electrochemical Reduction of N $_2$ H $_4$ (1.4 mmol) in the Presence of the Cluster Compounds (16 μ mol) for 4 h at 25°C

Cluster	Medium	Applied potential	Amount of product				
			Charge	$^{ m NH}_{ m 3}$	^H 2	$^{\eta}_{ m NH}_{ m 3}$	$^{\eta}_{\rm H}{}_{2}$
		V vs. SCE	С	μmol		8	
[Mo ₂ Fe ₆ S ₈ (SPh) ₉] ³⁻	н ₂ 0, рн 7.0	a^{a} -1.30	175	283	724	16	80
	H ₂ O, pH 12.	o ^a -1.30	110	413	311	36	56
	MeOH/THF	-1.25	145	1450	24	97	3.2
$[Fe_4S_4(SPh)_4]^{2-}$	н ₂ о, рн 7.0	-1.30	268	138	1370	5.0	99
	н ₂ о, рн 12.	o ^a -1.30	49	97	200	19	79
	MeOH/THF	-1.25	171	790	494	44	56
[Mo ₂ Fe ₆ S ₈ (SCH ₂ CH ₂ OH) ₉] ³⁻	н ₂ о, рн 7.0	b -1.25	316	556	1370	17	83
	H ₂ O, pH 12.	0 -1.25	34	199	62	57	35
$[\text{Fe}_4\text{S}_4(\text{SCH}_2\text{CH}_2\text{OH})_4]^{2-}$	н ₂ 0, рн 7.0	b -1.25°	194	109	936	5.4	93
	H ₂ O, pH 12.	0 -1.25	85	110	372	12	84
None	н ₂ 0, рн 7.0	-1.30	0	0	0	_	_

 $[^]a$ Suspension. b HSCH $_2$ CH $_2$ OH (1.0 x 10 $^{-2}$ cm 3) was added in order to stabilize the cluster in H $_2$ O (20 cm 3) at pH 7.0. c For 1 h at 25°C.

formation of NH $_3$ (η_{NH}_3) and H $_2$ (η_{H}_2) is almost 100% within the experimental errors in most cases; the evolution of N $_2$ resulting from the decomposition of N $_2$ H $_4$ has not been observed. Therefore, the reaction involved only the reductions of N $_2$ H $_4$ (Eq. 2) and hydrogen ions (Eq. 3) taking place competitively.

$$N_2^{H_4} + 2H^+ + 2e^- \longrightarrow 2NH_3$$
 (2)

$$2H^+$$
 + $2e^ \longrightarrow$ H_2 (3)

The catalytic activity of $[{\rm Mo}_2{\rm Fe}_6{\rm S}_8{\rm L}_9]^3-$ was apparently superior to $[{\rm Fe}_4{\rm S}_4{\rm L}_4]^2-$ with respect to the formation of NH $_3$. All the catalysts gave larger ${\rm \eta}_{\rm NH}_3$ values at pH 12.0 than at pH 7.0, suggesting that smaller hydrogen ion concentrations favour the formation of NH $_3$ rather than H $_2$. In fact, the ${\rm \eta}_{\rm NH}_3$ value in an MeOH/THF

(1:1 v/v) solution of $[{\rm Mo_2Fe_6S_8(SPh)_9l}^{3-}$ or $[{\rm Fe_4S_4(SPh)_4l}^{2-}$ containing LiCl as supporting electrolyte was several times larger than that in H₂O at pH 12.0, as expected from the weak acidity of MeOH; in particular an $\eta_{\rm NH_3}$ value of 97% was obtained with $[{\rm Mo_2Fe_6S_8(SPh)_9l}^{3-}$ in MeOH/THF (Table 1).

References

- 1) H. Dalton and L. E. Mortenson, Bacterial. Rev., 36, 231 (1972).
- 2) R. N. F. Thormoly, A. J. Eady, and D. J. Lowe, *Nature*, <u>272</u>, 557 (1978).
- 3) J. Chatt, A. J. Pearman, and R. L. Richards, J. Chem. Soc., Dalton Trans., 1977, 1852. T. Takahashi, Y. Minobe, M. Sato, Y. Uchida, and M. Hidai, J. Am. Chem. Soc., 102, 7461 (1980).
- 4) G. N. Schrauzer, P. R. Robinson, E. L. Moorehead, and T. M. Vickrey, J. Am. Chem. Soc., 98, 2816 (1976).
- 5) K. Tanaka, Y. Hozumi, and T. Tanaka, Chem. Lett., 1982, 1203.
- (a) G. Christou, C. D. Garner, and F. E. Mabbs, J. Chem. Soc., Chem. Commun.,
 1978, 740; (b) G. Christou, C. D. Garner, and F. E. Mabbs, ibid., <u>1979</u>, 91.
- 7) (a) B. A. Averill, T. Herskovitz, R. H. Holm, and J. A. Ibers, *J. Am. Chem. Soc.*, <u>95</u>, 3523 (1973); (b) C. L. Hill, J. Renaud, R. H. Holm, and L. E. Mortenson, *ibid.*, 99, 2549 (1977).
- 8) K. Tanaka, M. Tanaka, and T. Tanaka, Chem. Lett., <u>1981</u>, 895. K. Tanaka, Y. Imasaka, M. Tanaka, M. Honjo, and T. Tanaka, J. Am. Chem. Soc., <u>104</u>, 4258 (1982).
- 9) The cyclic voltammetric anode peak potentials of $[Mo_2Fe_6S_8(SPh)_9]^{3-}$ in MeOH/THF were -1.08 and -1.25 V vs. SCE for the 3-/4- and 4-/5- processes, respectively.
- 10) A dimethylsulfoxide solution (0.5 cm 3) of $[Mo_2Fe_6S_8(SPh)_9]^{3-}$ (16 µmol) and Triton X-100 (1.5 x 10^{-2} cm 3) was injected into water (20 cm 3) to disperse the cluster.
- 11) The anode peak potential of $[Fe_4S_4(SPh)_4]^{2-}$ (2-/3-) in MeOH/THF was -1.25 V vs. SCE and those of $[Mo_2Fe_6S_8(SCH_2CH_2OH)_9]^{3-}$ (3-/4- and 4-/5-) and $[Fe_4S_4(SCH_2-CH_2OH)_4]^{2-}$ (2-/3-) in water at pH 7.0 were -0.58, -0.76, and -0.75 V vs. SCE, respectivery.

(Received March 26, 1983)